Binary logistic regression as an instrument for the prediction of default
Keywords:
probability of default, credit score, binary logistic regression, self-employmentAbstract
The objective of this article is the development of a prediction model of the non-payment of the self-employed sector in the Popular Savings Bank (BPA) of Santiago de Cuba province. It was used the analysis and synthesis method, and the binary logistic regression (BLR) for the data treatment. The analysis of the main methodologies of clients' classification used in the banking activity allowed identifying the BLR as a prognostic instrument. Default was considered a dependent variable and the Capacity to Pay, Credit History, Qualitative Evaluation, Tax History and Experience were considered independent variables, which led to an estimate of the probability of default of new applicants for financing.
References
2. Aguayo, M., & Lora, E. (2016, febrero 22). Fundación Andaluza Beturia para la investigación en salud. Retrieved from fabis.org
3. Bangdiwala, S. (2018). Regression: binary logistic. International journal of injury control and safety promotion, 3(25), 336-338.
4. BCC. (2016). Instrucción número 4. Normas para el otorgamiento, control y recuperación de los financiamientos a los trabajadores por cuenta propia y personas naturales autorizadas a ejercer otras formas de gestión no estatal. La Habana: Banco Central de Cuba.
5. Chopra, A., & Bhilare, P. (2018). application of ensemble models in credit scoring models. Business Perspectives and Research, 2(6), 120-141.
6. Demma, C. (2017). Credit scoring and the quality of business credit during the crisis. Economic Notes: Review of Banking, Finance and Monetary Economics, 2(46), 269-306.
7. Diallo, B. (2006, septiembre 21). Un modele de “credit scoring” pour une institution de microfinance Africaine: le cas de Nyesigiso au Mali. Retrieved from Mali: Mimeo: https://halshs.archives-ouvertes.fr/halshs-00069163/document
8. Expósito, D., & Rodríguez, S. (2020). Perfeccionamiento de la evaluación del riesgo de crédito al segmento cuentapropista en el Banco Popular de Ahorro. In F. Borrás, Banca comercial cubana: propuestas de desarrollo (pp. 176-197). La Habana: Félix Varela.
9. Expósito, D., Díaz, J., & Rodríguez, S. (2018). Factores determinantes del riesgo de crédito en el Banco Popular de Ahorro. Anuario Facultad de Ciencias Económicas y Empresariales(Anuario Especial), 137-153.
10. Franco, M. (2010). Nuevo procedimiento para el análisis del riesgo de crédito en el Banco de Crédito y Comercio en Santiago de Cuba. Santiago de Cuba: Tesis Doctoral.
11. Leal, A., Aranguiz, M., & Gallegos, J. (2018). Credit risk analysis, credit scoring model proposal. Revista Facultad de Ciencias Económicas: Investigación y Reflexión, 1(26), 181-207.
12. Montalván, C. (2019). Credit scoring, aplicando técnicas de regresión logística y redes neuronales, para una cartera de microcrédito. Quito: Master's thesis, Universidad Andina Simón Bolívar.
13. Narváez, A. (2019). Variables determinantes de la probabilidad de incumplimiento de los créditos comerciales en una institución financiera del Ecuador, aproximación bajo el modelo de regresión logística binaria. Ambato: Master's thesis, Universidad Técnica de Ambato. Facultad de Contabilidad y Auditoría. Dirección de Posgrado.
14. Sharma, M., & Zeller, M. (1997). Repayment performance in group-based credit programs in Bangladesh: An empirical analysis. World Development, 10(25), 1731-1742.
15. Uanhoro, J., Wang, Y., & O’Connell, A. (2019). Problems With Using Odds Ratios as Effect Sizes in Binary Logistic Regression and Alternative Approaches. The Journal of Experimental Education,, 1-20.
16. Van Gool, J., Baesens, B., Sercu, P., & Verbeke, W. (2009). An Analysis of the Applicability of Credit Scoring for Microfinance. Orlando: Academic and Business Research Institute Conference.
17. Viganò, L. (1993). A credit-scoring model for development banks: An African case study. Savings and Development, 17(4), 441-482.
18. Vogelgesang, U. (2003). Microfinance in times of crisis: The effects of competition, rising indebtness, and economic crisis on repaymentbehaviour. World Development, 12(31), 2085-2114.
19. Xiao, R., Liu, Y., Huang, X., Shi, R., Yuw, & Zhang, T. (2018). Exploring the driving forces of farmland loss under rapidurbanization using binary logistic regression and spatial regression: A case study of Shanghai and Hangzhou Bay. Ecological Indicators, 95, 455-467.
20. Zeller, M. (1998). Determinants of repayment performance in credit groups: The role of program design, intragroup risk pooling, and social cohesion. Economic Development and Cultural Change, 3(46), 599-620.
Published
Issue
Section
License
Esta revista proporciona un acceso abierto inmediato a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global de conocimiento.
This journal provides immediate open access to its content, based on the principle that providing the public with free access to research supports a greater global exchange of knowledge.